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Dynamics of Local Input Normalization Result from Balanced
Short- and Long-Range Intracortical Interactions in Area V1
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To efficiently drive many behaviors, sensory systems have to integrate the activity of large neuronal populations within a limited time window.
These populations need to rapidly achieve a robust representation of the input image, probably through canonical computations such as divisive
normalization. However, little is known about the dynamics of the corticocortical interactions implementing these rapid and robust computa-
tions. Here, we measured the real-time activity of a large neuronal population in V1 using voltage-sensitive dye imaging in behaving monkeys.
We found that contrast gain of the population increases over time with a time constant of �30 ms and propagates laterally over the cortical
surface. This dynamic is well accounted for by a divisive normalization achieved through a recurrent network that transiently increases in size
after response onset with a slow swelling speed of 0.007– 0.014 m/s, suggesting a polysynaptic intracortical origin. In the presence of a surround,
this normalization pool is gradually balanced by lateral inputs propagating from distant cortical locations. This results in a centripetal propa-
gation of surround suppression at a speed of 0.1– 0.3 m/s, congruent with horizontal intracortical axons speed. We propose that a simple
generalized normalization scheme can account for both the dynamical contrast response function through recurrent polysynaptic intracortical
loops and for the surround suppression through long-range monosynaptic horizontal spread. Our results demonstrate that V1 achieves a rapid
and robust context-dependent input normalization through a timely push–pull between local and lateral networks. We suggest that divisive
normalization, a fundamental canonical computation, should be considered as a dynamic process.

Introduction
In natural conditions, the visual system has only a few hun-
dreds of milliseconds in between two saccades to process in-
puts that can vary tremendously in contrast and illumination
(Frazor and Geisler, 2006). Several pieces of evidence show
that, indeed, its sensitivity rapidly adapts to the image content.
For instance, contrast detection thresholds rapidly decay to an
optimal value in �100 ms (Rovamo et al., 1984). Short-latency
tracking eye movements in humans and monkeys demonstrate
that an optimal contrast setting is achieved through fast cen-
ter–surround interactions operating over large portions of the
visual field (for review, see Masson and Perrinet, 2012), sug-
gesting the existence of an as yet undocumented fast and
context-dependent normalization at the scale of neuronal
populations.

Any point in the image is processed by a large population of
primary visual cortical neurons (Albus, 1975; Dow et al., 1981)
through massive recurrent excitatory and inhibitory intracortical
loops (Douglas and Martin, 1991; Callaway, 1998). Such a net-
work sets neuronal responsiveness within an optimal range for
efficiently encoding local image features (Schwartz and Simon-
celli, 2001). For instance, the operating range of contrast sensi-
tivity is thought to be controlled by a large pool of cells
implementing a divisive normalization of responses driven by
thalamo-cortical inputs (Albrecht and Hamilton, 1982; Caran-
dini et al., 1997). This nonlinear contrast gain control mechanism
is well documented for single neurons (Albrecht and Hamilton,
1982; Ohzawa et al., 1982) as well as populations (Busse et al.,
2009; Sit et al., 2009). It is also context dependent (Levitt and
Lund, 1997; Polat et al., 1998) such that neuronal responses
are modulated by surrounding stimuli (Blakemore and Tobin,
1972; Grinvald et al., 1994; Cavanaugh et al., 2002a; Smith et
al., 2006; Meirovithz et al., 2010) in a way that is also consis-
tent with divisive normalization (Webb, 2005; Carandini and
Heeger, 2011). Still, it remains unknown how different corti-
cal populations cooperate to rapidly normalize visual input in
a context-dependent manner. Moreover, the vast majority of
studies have investigated normalization mechanisms during
steady-state responses, and we have a poor, controversial (e.g.,
Müller et al., 2001; Albrecht et al., 2002), knowledge of the
temporal dynamics of contrast gain control and surround sup-
pression (Bair et al., 2003; Webb, 2005).

To unveil the dynamical role of intracortical networks in
contrast gain setting, we recorded from two behaving mon-
keys the response dynamics of large portions of V1 surface to
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CNRS and Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France. E-mail:
frederic.chavane@univ-amu.fr.

A. Reynaud’s present address: McGill Vision Research, McGill University, Department of Ophthalmology, Mon-
treal, QC Quebec H3A 1A1, Canada.

DOI:10.1523/JNEUROSCI.1618-12.2012
Copyright © 2012 the authors 0270-6474/12/3212558-12$15.00/0

12558 • The Journal of Neuroscience, September 5, 2012 • 32(36):12558 –12569



local stimuli with voltage-sensitive dye imaging (Shoham et
al., 1999). We show that contrast gain of V1 neuronal popu-
lation rapidly increases after stimulus onset albeit with a tim-
ing and amplitude that varied with distance from the center of
the stimulus cortical representation. Both observations are
well captured by a simple divisive normalization model fed by
a dynamic recurrent neuronal pool. Such local normalization
is balanced by surround-mediated propagated activity that
suppresses the central response at a speed congruent with hor-
izontal intracortical axons. A simple generalized normaliza-
tion model can account for both the dynamical contrast
response function (CoRF) through recurrent polysynaptic in-
tracortical loops and for the surround suppression through
long-range monosynaptic horizontal spread.

Materials and Methods
Surgeries, maintenance, and staining. Experiments were conducted in two
males rhesus macaque monkeys (Macaca mulata, monkeys NO and
WA). The datasets used in the present study were collected over a total of
10 experimental sessions. Experimental protocols have been approved by
the local Ethical Committee for Animal Research, and all procedures
complied with the French and European regulations for animal research
as well as guidelines from the Society for Neuroscience.

Monkeys were chronically implanted with a head-holder and a record-
ing chamber located above V1/V2 areas. In a second surgery, a search coil
was inserted below the ocular sclera to record eye movements with the
electromagnetic technique (Robinson, 1963). Experimental control, data
collection, and on-line eye position monitoring were done by a computer
running the REX software (National Eye Institute, NIH) with the QNX
operating system. After full recovery, the monkey was trained to perform,
with head fixed, foveal fixation of a small red target presented over dif-
ferent static and moving backgrounds for up to 2–3 s. Once good fixation
behavior was achieved, a third surgery was performed. Dura was re-
moved surgically over a surface corresponding to the recording aperture
(18 mm diameter), and a silicon-made artificial dura was inserted under
aseptic conditions (Arieli et al., 2002). Such silicon-dura is necessary to
have a good optical access to the cortex.

Before each recording session, the cortex was stained with the voltage-
sensitive dye (VSD) RH-1691 (Optical Imaging). Cortex was illuminated
at 630 nm. Optical signals were recorded with a Dalstar camera (512 �
512 pixel resolution; frame rate, 110 Hz) driven by the Imager 3001
system (Optical Imaging).

Experimental design and visual stimuli. During a single trial, the mon-
key had to fixate a central red dot for 1–2 s. The animal gaze was con-
strained in a window of 2° � 2°. Trials were canceled if the monkey either
left the fixation window or made a small saccade. Stimuli were presented
during fixation, and a reward (drop of water) was given after if the mon-
key maintained fixation during the acquisition period. Trials lasted 999
ms, with a 100 ms delay, 600 ms visual stimulation, and poststimulus
delay of 299 ms. We typically recorded 60 trials per condition. Visual
stimuli were drifting sinusoidal gratings of different contrasts. They were
presented behind a circular window (2° diameter) whose central location
was adjusted to cover a significant part of the visible portion of cortex. In
the two monkeys, this central stimulus was located in the near parafoveal
region of the visual field (monkey NO: 1° left, 1° down; monkey WA: 0.5°
left, 3° down). Orientation (45° counterclockwise), spatial frequency (SF;
1 cycle per degree), and temporal frequency (TF; 3 Hz) of the grating
patch were optimized to drive V1 neurons. Contrast varied from 2.5% to
80%. To investigate center–surround interactions, the central 2° grating
patch was presented together with an annular surround consisting of a
cross-oriented flickering grating (same SF and TF) at 80% contrast. This
surround was either adjacent to the edge of the central stimulus or posi-
tioned at one of two larger eccentricities (1° or 1.8°). In control trials, the
surround was presented alone.

Data analysis. Stacks of images were stored on hard-drives for off-line
analysis. The analysis was carried out with MATLAB R2009a (Math-
Works) using the Optimization, Statistics, and Signal Processing Tool-

boxes. Data were preprocessed using a linear model-based denoising
method (Reynaud et al., 2011). Briefly, a physically motivated set of basis
vectors was designed: every source of signal and noise has been charac-
terized into the set of regressors. For each individual trial, the raw signal
has been decomposed along these basis vectors. Data were denoised by
removing the components that are not linked to the evoked response in
each individual trial: physiological artifacts, environmental noise, and
dye bleaching.

Response latency was defined as the point in time at which the signal
derivative crossed a threshold set at 2.57 times (99% confidence) (Brin-
guier et al., 1999) the SD of its baseline computed during a 100-ms-long
window right before stimulus onset.

For this study, data from several sessions were accumulated by
registering them onto a reference session (using a quadratic registra-
tion algorithm described by Takerkart et al., 2008). Then responses
amplitudes were normalized to a reference condition. Figure 1 A rep-
resents all the superimposed registered vascular images of the exper-
imental sessions (high-pass filtered). Such registration across
different experiments is possible given that cortical maps are stable
and reproducible across long time periods (up to one year; Shtoyer-
man et al., 2000). We evaluated the quality of the fits with an adjusted

coefficient of determination R2� . This computation simply normalizes
the coefficient of determination to the degrees of freedom in the
model. In other words, this measure provides information about the
goodness of fit that is taking into account the number of data points
and the number of parameters in the model. It is actually equivalent to
the percentage of variance explained by the model:

R2� � 1 � �1 � R2�
n � 1

n � p � 1
� 1 �

SSerr

SSt

dft

dferr

,

where R 2 is the coefficient of determination, n is the sample size, p is the
number of regressors in the model, SSerr the residual sum of squares, SSt
the total sum of squares, and df is the corresponding degrees of freedom
(dft � n � 1 and dferr � n � p � 1).

Results
We used real-time VSD imaging (VSDI) in awake, fixating mon-
keys to measure the responses of a large population of V1 cortical
neurons to a local (2°) grating patch presented in near-parafoveal
vision (Reynaud et al., 2011). VSD responses are normalized vari-
ations of fluorescence, referred to as �F/F, and reflect the total
synaptic activity of the cortical population under study.

The synaptic population response shows a dynamic increase
in contrast gain
First, we varied target contrast to probe the contrast response
functions at different cortical locations and time lapses (Fig. 1).
In two animals, data were collected over five experimental ses-
sions each, coregistered, and averaged within a rectangular region
of interest (ROI) (Fig. 1A) covering a retinotopic representation
from the center of the local target (inner arc-circle; reddish color
code) to �2° in its periphery (outer arc-circles; yellowish color
code; Fig. 1A, right, retinotopic map). Such an ROI provides a
high spatial resolution reference frame to study input normal-
ization along the center–surround stimulus representation.
Figure 1 B illustrates, within this ROI, the optical responses
evoked by a grating patch of spatial and temporal frequencies
chosen to fit the median optimal values of individual cell tun-
ings, presented at three different contrasts. Responses
emerged within the retinotopic stimulus imprint and gradu-
ally propagated over the cortical surface with a speed of 0.37
m/s (Grinvald et al., 1994; Bringuier et al., 1999; Slovin et al.,
2002; Chavane et al., 2011).

Time courses of the VSDI signal are shown in Figure 2A, after
averaging within three sub-ROIs ranging from central (Fig. 1A,
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top, red) to peripheral (orange and yel-
low) locations. In the central location
(Fig. 2A,B, top row), increasing contrast
from 2.5% to 40% resulted in shorter la-
tency, and brisker and stronger responses.
Above 40%, responses saturated. At more
eccentric locations, responses were both
delayed and reduced, but similar contrast
dynamics were observed. Response am-
plitude was measured for each time bin
(9.09 ms), and the nonlinear relationship
between amplitude and contrast (i.e.,
the CoRF; Fig. 2B) was fitted with a
Naka–Rushton function (Eq.1) (Naka
and Rushton, 1966; Albrecht and Hamil-
ton, 1982):

R�c� � A
cn

c50
n � cn

, (1)

where R is response amplitude, c is con-
trast, and A is maximum amplitude. Pa-
rameters n and c50 control, respectively,
the slope of the curve and the contrast of
semi-saturation. Equation 1 fitted well V1
population responses (adjusted coeffi-

cient of determination R2� 	 0.85 for all
curves; see Materials and Methods), as
shown previously for both single cells
(Ohzawa et al., 1985; Sclar et al., 1990; Al-
brecht et al., 2002) and population re-
cordings (Chen et al., 2008; Sit et al.,
2009). At central location, c50 decreased
from 30% to 5% over the 40 –100 ms time
period from stimulus onset with a time
constant of 31 ms. Similarly, the slope n of
the contrast response function reduced
from �3 to �1 (time constant 35 ms), but
also the contrast threshold (CT) (i.e., the
contrast above which detectable responses
are evoked, here chosen as the time when
the response is higher than the signal SD;
Fig. 2B, �) (Ohzawa et al., 1985), de-
creases from 25% to 1%. This temporal
dynamics of contrast sensitivity is illus-
trated in Figure 2C for all cortical posi-
tions: c50, CT, and n values were all higher
and delayed at more peripheral locations,
but all decreased with a time constant
similar to that observed in the center
(range: 15–34 ms). An alternative ordi-
nate for the corresponding visual distance
was added on the right-hand side.

The normalization pool size increases
transiently at response onset
Theoretical studies have proposed that
nonlinear CoRF can be described as a di-
visive normalization mechanism, where
activity of the population of cortical
neurons driven by the visual input is nor-
malized by converging inputs from them-
selves and neighboring cells, defined as

Figure 1. Spatio-temporal VSDI activation to local stimuli at various contrasts. A, Left, Ocular dominance maps were
used to delimit the functional border between V1 and V2. Middle, Superimposed registered images of the cortical vascu-
lature over five sessions. The overlaid rectangle indicates the ROI common in all sessions, the dotted arc-circles indicate
retinotopic representations of the stimulus for the center (2° diameter) to the periphery (dotted arc-circles at 1° and 1.8°
eccentricity to the center outer border). The different colored rectangles indicate the region of interest used in the next
figure. Right, Color-coded retinotopic map of the cortical rectangular region defined in the middle panel. The retinotopy
was obtained in response to seven local stimuli placed from �3° to �5° below the fovea (and 0.5° on the left). B, Time
sequence of cortical response to local stimuli presented at 5%, 20%, and 60% contrast.
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the normalization pool (Heeger, 1992;
Carandini et al., 1997). Therefore, under
that hypothesis, the strength of normal-
ization should grow with the level of activ-
ity within the cell’s neighborhood. As a
consequence, the contrast gain setting
across the cortical surface should directly
depend on changes in activity level. In-
deed, Figure 2C shows that the shape of
the CoRF changes from center to border
cortical representation (as captured by
the different parameters characterizing the re-
sponse function), as expected from the de-
crease of cortical activity along the same
cortical dimension (Fig. 1B). Since we
measure both the activity profile and
the response normalization across the
cortical surface, we can theoretically infer
the equivalent size of the cortical region
within which neuronal activity is pooled. To
do so, we developed a simple model to ac-
count for how the activity profile (Fig. 3A,
top) affects changes of the normalization
strength over the cortical surface (Fig. 3A,
bottom). We assumed that the sampling of
neuronal activity feeding the normalization
pool is equivalent to a dynamic Gaussian,
GN(t), of SD �N(t) (Fig. 3A, middle). Un-
der this assumption, the resulting pooling
of neuronal activity should have a spatial
profile equivalent to an error function
with an SD, �PNA(t), equal to the root
mean square of �P, which describes the
activity profile, and �N(t) (Fig. 3A, bot-
tom). If the Gaussian sampling of neuro-
nal activity is large (Fig. 3A, dotted line),
then the pooling of neuronal activity
should decrease less abruptly across corti-
cal surface than if it is small (Fig. 3A, gray
line). Fromourrecording,wewillmeasure�P

and estimate �PNA to infer the equivalent size
of the normalization pool �N.

First, we measured the activity profile
across the cortical surface (Fig. 3A, top)
and fitted it with an error function whose
SD provided an estimate of �P (0.869 mm
for monkey WA; 0.858 mm for monkey
NO). It is interesting to note that the esti-
mated values of �P are congruent with the
size of the point-spread function (Dow et
al., 1981; Van Essen et al., 1984; Tehovnik
and Slocum, 2007). Second, we quantified
the spatial profile of contrast normaliza-
tion that is proportional to �PNA under
our hypothesis. We saw that, along with
stimulus representation, all parameters of
the CoRF fit vary (c50, asymptotic value of
the CoRF (Rmax), and n; Fig. 2C), indicat-
ing that a single measure cannot fully ac-
count for changes of the normalization
strength. We therefore decided to quan-
tify normalization strength over the whole
CoRF shape by computing the normal-

Figure 2. The temporal and spatial aspects of the contrast response function. A, Time course of the VSDI response to all
contrasts (from 0% to 80%) in three different regions of interests from the central (top, red) to peripheral (bottom, yellow)
locations. B, Contrast response function of VSDI response for same regions as in A (hue of the color code) over time
(measured in 9.09 ms time bins, ranging from 27 to 145 ms, brightness of the color code). Observed data (dots) are
presented with the Naka–Rushton best-fit (curve). The SD (�) estimated on blank trials is shown as a horizontal dotted
line. C, Spatio-temporal representation of c50 (left), CT (middle), and n (right) from the Naka–Rushton function from
central (1–3 mm) to eccentric (4 – 6 mm) positions. Holes correspond to positions leading to nonsignificant fit. Dashed gray
lines indicate the center stimulus border projection calculated from Figure 4. Data are averaged over the anteroposterior
axis of the ROI shown in Figure 1 A. An alternate visual dimension scale is shown on the right-hand side of the figure.
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ized distance between a reference CoRF, at
the stimulus center representation, and a
test CoRF for different positions along the
cortical surface (Eq. 2):

NG�p,t� � 1 � sig��
c

Rr,t�c� � Rp,t�c��

�
�

c
�Rr,t�c� � Rp,t�c��

2

�
c

�Rr,t�c� � Rp,t�c��
2
, (2)

where Rr,t(c) is the reference CoRF located
at the stimulus center and Rp,t(c) is the test
CoRF at position p, both measured at time
t. The resulting normalization gradient
(NG) is equal to 1 when the test and ref-
erence CoRFs are identical, and is �1 if
the test CoRF is less sensitive to contrast
and/or produces a smaller response than
the reference CoRF. On the contrary, any
value 	1 indicates that the population
measured by the test curve is more sensi-
tive to contrast and/or produces larger re-
sponses. When moving from center to
border representation of the stimulus,
Figure 2, B and C, shows that the test curve
is shifted to the right (i.e., less sensitive to
contrast) and down (i.e., smaller re-
sponse), and/or becomes shallower (i.e.,
smaller n), and therefore NG should grad-
ually decrease to �1.

Figure 3B plots NG (dots) as a function
of cortical position and time. NG is 	0.99
within the cortical area representing the
central stimulus, as delimited by the thick
black line (Fig. 1A, cortical positions 0 to
�3 mm). Within this region, each local
CoRF is very similar to the reference, suggesting that the under-
lying neuronal populations share an equivalent normalization
pool. Interestingly, such a region is not of fixed size but varies
with time with a biphasic time course, first expanding by 1.2 mm
before shrinking back by 0.6 mm to reach a steady-state size. In
contrast, at the border of the stimulus representation (i.e., corti-
cal positions �3 to 6 mm), NG rapidly decreases as expected. The
spatial profile of the NG is ideally fitted by an error function, as

described above (R2� 	 0.96; Fig. 3A, continuous curves), that
provides an estimate of �PNA.

In short, we have thus measured �P on the response profile
and estimated �PNA from the best-fit of the spatial profile of the
NG. The apparent size of the normalization pool, �N, can now be
deduced from Equation 3 (Fig. 3A):

�N � ��PNA
2 � �p

2 , (3)

In the two monkeys, best-fit estimates of �N exhibited a biphasic
time course with a sharp increase of 0.35 mm (0.49 mm for mon-
key NO) during the first 30 ms (90 ms for monkey NO) followed
by a rapid reduction to the asymptotic size (Fig. 3C, similar re-
sults from monkey NO shown in Fig. 3D). Such temporal dynam-
ics were best fitted by a difference-of-Gaussian function
(continuous black lines). Importantly, this dynamic is compara-
ble to the decay time constant of the c50 at central location (Figs.
2C, 3C,D, 31 and 23 ms for monkey NO), indicating that both

normalization pool size and contrast gain stabilize simultane-
ously (Fig. 3C,D). Such a slow early increase in cortical pool size
corresponds to a very slow swelling speed of 0.014 and 0.007 m/s
for monkeys WA and NO, respectively. Note that we specifically
used a different name for this speed since we believe it differs
from a simple propagation mechanism: the increase of the nor-
malization pool size implies a progressive recruitment of more
and more neurons without the necessary involvement of propa-
gation of activity. The slowness of the speed suggests the existence
of a polysynaptic recruitment of intracortical recurrent inputs in
contrast gain setting (Trevelyan et al., 2007).

Peripheral stimuli induce a centripetal propagation of activity
Next, we probed how such dynamics of contrast normalization is
affected by the lateral interactions that could modulate such gain
setting in a context-dependent manner. Figure 4 shows
space–time plots of VSDI responses to either high-contrast
center-only stimuli (Fig. 4A) or high-contrast surround-only
stimuli presented at three increasing eccentricities (Fig. 4B–D).
On each graph, crosses indicate the response latency for all spatial
positions. Spatial changes in latency were fitted with a double
linear regression (continuous lines, see methods). Cortical loca-
tions within the retinotopic representation of the stimulus (Fig.
4A, central stimulus, upper part; Fig. 4B,C, peripheral stimuli,
lower part) have constant latencies across space, as expected (fit-
ted by vertical lines). Conversely, regions outside the retinotopic
representation of the stimulus were gradually activated resulting

Figure 3. Estimating the dynamics of the normalization pool size. A, Population normalization pool model (see text). The
measured spatial profile of activity along the cortical dimension (top) is fitted by an error function with SD �P. Pooling of neuronal
activity is modeled as a spatial Gaussian of SD �N. The resulting spatial profile of the pooling of activity is an error function of SD
�PNA equal to the root mean square of �N

2 
 �P
2. Varying the Gaussian pooling (gray or dotted line) will affect the shape of the

spatial profile of the activity pooling. B, NG (see text) is plotted as a function of cortical position and time (“
”). The NG spatial
profiles were fitted with error functions (continuous lines). The gray plane is a threshold intercept of the NG at 99%, delimiting the
border within which test and reference CoRFs are identical (black curve). C, D, Dynamics of the normalization pool size (black) for
two monkeys, with data fitted with a difference of error functions. Superimposed is the dynamics of c50 averaged for a central
region of interest (gray), with data fitted with a decaying exponential. Note that the spatio-temporal scales of C and D are identical
although centered on different values.
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in spatio-temporal slanted regression lines with mean slopes of
0.24 � 0.10 m/s. There were no systematic differences between
centripetal and centrifugal propagation speeds that are all in the
same range (0.20 vs 0.37 m/s in monkey WA; and 0.10 vs 0.11 m/s
in monkey NO; see Fig. 8C). This latency shift is consistent with
the speed of intracortical lateral propagation (Hirsch and Gilbert,
1991). Figure 4E summarizes this result for a central position
(Fig. 4A, ROI indicated by red vertical bar). In this region, center-
driven responses had a latency of �33 ms, whereas activity orig-
inating from the three different peripheral inputs will reach the
same ROI at latencies of 51, 62, and 92 ms, respectively. From the
latencies of center-driven and nearest surround-driven re-
sponses, we defined the spatio-temporal border of the central
stimulus (Fig. 4A,B, horizontal dotted lines). Interestingly, this
border corresponds to the steady-state limit of the region show-
ing maximal NG, hence being normalized by an “optimal” pool
(Fig. 3B, thick black curve, t � 300 ms). All surround stimuli
generated centripetal activity propagating from the stimulus in-
ner border to the stimulus center (Fig. 4A–D). To compile these
spatio-temporal dynamics, activities evoked by the three sur-
round stimuli were replotted in Figure 4F within a single metric
relative to the representation of the surround inner border. The
ordinate now represents VSD activity evoked for an increasing
centripetal cortical distance to the cortical representation of the
surround stimulus inner border. Each surround condition pro-

vides data along different positions of this metric and with some
overlap, as shown by the vertical color-coded bar on the right-
hand side of the plot in Figure 4F. An alternative ordinate scale
was also added showing the corresponding visual degree dimen-
sion. Figure 4F reveals that surround-driven activity propagated
smoothly at a constant speed over very long distances.

Peripheral stimuli induce a centripetal suppressive
propagation that freezes the CoRF
Once center-only and surround-only activities have been care-
fully characterized in both space and time, we probed center–
surround interactions by varying both center contrast and
surround distance. Surround distance has indeed revealed to be a
suitable parameter to investigate the cortical origin of surround
suppression (Bair et al., 2003). Figure 5A plots the VSDI re-
sponse, averaged in the center cortical representation, to center–
surround (first to third columns, increasing surround distance)
and center-only stimulations (last column) and for different cen-
ter contrast (gray color code). The response to peripheral-alone
stimulation (the center zero-contrast condition for center–sur-
round conditions) is superimposed for comparison as dotted
black curves (Fig. 4E, blue curves). The black vertical dotted line
indicates the latency of a cortical response to a surround-only
stimulus. Until this point in time, responses to center–surround
and center-only stimuli were identical. Later (shaded region),

Figure 4. Surround stimulus induces centripetal propagation. A–D, Spatio-temporal representations of VSDI activity as already illustrated in Figure 1 B but now displayed in space–time plots
after averaging pixels along the anteroposterior axis in response to 80% contrast stimulation for four stimuli: A, center (2° diameter); B, close surround (inner diameter adjacent to the central target
contour 2°; outer diameter 4°); C, intermediate surround (inner diameter 4°, outer diameter 5.6°); D, far surround (inner diameter 5.6°; outer 6.9°). Superimposed dots represent response latency
at each cortical position, fitted with two straight dotted lines (one orthogonal, one oblique) representing respectively regions within which responses latencies are the same or gradually increasing.
Dashed gray lines indicate cortical position at which center and adjacent surround responses cross each other, indicating center stimulus border projection. E, Time course of the VSDI response for
the four conditions presented in A–D averaged in a central region of interest (1 to 2 mm, red vertical bar in A). Vertical lines indicate latencies. F, Unified representation of the three spatio-temporal
profiles of activity in B–D. Ordinate corresponds to the cortical distance from the inner border of the peripheral stimuli. Vertical blue lines on the right indicate ranges of the data from the three
conditions. Contours delimit different levels of iso-activity. An alternate visual dimension scale is shown on the right-hand side.
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adding a surround input only marginally increases the response
amplitude to the central stimulus, compared with the center-
alone condition, indicating that the center–surround condition is
in fact strongly suppressed compared with the linear prediction
from center-only and surround-only components.

Next, we quantified the center–surround effect for both la-
tency and response amplitude. Figure 5B shows the effect of con-
trast and surround position on response latency. As seen in
previous studies using VSDI in awake behaving monkeys (Sit et
al., 2009; Meirovithz et al., 2010), the response latency decreases
�50 ms when stimulus contrast increases (from 87 to 40 ms, see
red points). Similarly, the response latency increases �40 ms
when moving the surround stimulus away by 1.8° (Grinvald et al.,
1994; Bringuier et al., 1999) (bluish circles on the right-hand side,
from 62 to 98 ms). In the center–surround configuration, we
observed that response latency is equal to the minimum latency
of responses to center-alone or surround-alone components
(Wilcoxon rank-sum test � � 0.01). We fitted the relationship
between response latency and contrast with a Naka–Rushton
function (Barthélemy et al., 2006, 2010), as indicated by contin-
uous curves. The largest change in response latency occurred
within a 5–20% contrast range, as indicated by an averaged best-
fit c50 of �10%). We also observed that surround stimulus had no
effect upon such a relationship, as expected, since response onset
and context-dependent modulations are thought to be set
through different networks, feedforward/recurrent and horizon-
tal/feedback, respectively.

Figure 5C plots the CoRFs of the responses illustrated in Fig-
ure 5A measured in the central ROI at nine different time lapses.
Red curves replot the CoRF for the center-only condition (same
as Fig. 2B). Bluish curves plot the CoRF for center–surround

conditions, using the surround-only response as a zero-contrast
condition. This time sequence shows the dynamic emergence of
suppression, with earlier and higher degrees of suppression ob-
served for surround stimuli closer to the central stimulus. The
surround-mediated propagation of activity freezes the CoRF
dynamics once it has reached the cortical representation of the
central stimulus: farther surround distances yielded to later
surround suppressions (Barthélemy et al., 2006). To charac-
terize the nonlinear interactions between surround-driven
and center-driven mechanisms, we extended the divisive nor-
malization model (Eq. 1) (Naka and Rushton, 1966; Ca-
vanaugh et al., 2002a) to center–surround conditions by
adding a new term, f(d), in both numerator and denominator
(Eq.4) (Busse et al., 2009). This term hence accounts for the
contribution of surround-mediated propagation of activity to
both the response and the normalization process respectively.
At any point in time, f(d) can be seen as the net input strength
of surround-mediated activity that is necessary for compen-
sating for the center-driven input as a function of the cortical
distance d. Notice that the center-only condition corresponds
to a limited case where d3 
�.

R�c,d� � A
�c�n � � f�d��n

�c50�d��n � � �c2 � f�d�2� n
, (4)

where f�d� � w.e�
d2

2�2. We fitted this single generalized normal-
ization model for each time bin individually, and the resulting fits
accounted extremely well for all center–surround CoRF dynam-

ics (Fig. 5C, continuous curves) (R2� 	 0.85). Adding the new

Figure 5. Surround modulation of center response latency and amplitude at various contrasts. A, Time course of the VSDI response to all contrasts (from 0% to 80%) in response to center–
surround configuration for three different surround distances to the outer border of the central stimulus (first column 0°; second column 1°; third column 1.8°) and for the center-only condition
(fourth column, same as Fig. 2 A). VSDI was averaged within the central region of interest (same as Fig. 2 A). The dotted curve is the response to zero contrast in the center, hence peripheral-alone
stimulus in center–surround conditions and no stimulus in the center-only condition. Vertical dotted lines are latencies of all responses. A shaded area is delimiting the time period for which a
response to surround-only is observed. B, Response latency is plotted as a function of contrast for all conditions (color code shown in A), for center–surround (bluish squares), center-only (red
square), and surround-only (bluish circles and horizontal dotted lines) conditions. Curve plots Naka–Rushton fits applied to the latency responses for center–surround and center conditions. Error
bars are SEM. C, Time sequence of the contrast response functions observed in the four conditions: center (red), center with close, intermediate and far periphery (blue hue), averaged in a central
region of interest (Fig. 4 A, red bar). Data are fitted with the model presented in Equation 4, realigned according to the 0% center contrast condition. As indicated in the last time frame (t � 164 ms),
we measured an RGI for each time frame, to quantify how much the response amplitude is suppressed by the surround, and a CGI, to quantify how much the operating range of the contrast response
function is frozen by the surround (see Eq. 5).
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input f(d) to the model captured the dampening of the contrast
gain within the central ROI as illustrated by the dynamics of the
semi-saturation contrasts (c50(d), large circles). The proximal
surround (dark blue) clamped the CoRF to the range it has
reached 64 ms after stimulus onset, both in terms of amplitude
and contrast sensitivity (i.e., c50(d) �30 – 40%). Intermediate and
distal surrounds clamped the CoRF later (82 and 127 ms, respec-
tively) and therefore for stronger response amplitude and sensi-
tivity (i.e., c50(d) �10 –20%). Figure 6 provides a detailed
quantification of the dynamics of the parameters that we ex-
tracted from Equation 4, such as c50 (Fig. 6A1,B1), CT (Fig.
6A2,B2), and n (Fig. 6A3, B3), but also the apparent contrast at
maximum response (ACMR) (Fig. 6A4,B4) and f(d) (Fig. 6A5,B5)
for all three peripheral distances (color coded) and two cortical
positions (Fig. 6A,B). The first position (Fig. 6A) is the same as in
Figure 5. The arrows point to the latency of the surround-only
evoked response at that cortical position. When the surround
reached the central position, it actually clamped c50 and CT to
the value it had reached (only a small rebound is observed for
the intermediate contrast after 100 ms).

To measure the functional impact of such response stabiliza-
tion, we measured the ACMR defined as the contrast for which
center-alone stimuli evoked a level of activity identical to the one
evoked by maximal center contrast in the center–surround con-
figuration. The observed clamp of c50 and CT mechanically
results in a sharp decrease of ACMR starting when the surround-
evoked activity reaches central representation. It is indeed ex-
pected since the response to center-alone stimuli continues to
increase and gets more sensitive to contrast over time, although
the response to the center–surround configuration is frozen. The
apparent contrast of the central target in the center–surround
condition will therefore dynamically decrease to very low con-
trast values. The exponent (n) was not dependent on surround
distance and yielded to a gradual decrease similar to what was
observed in Figure 2. Interestingly, in Figure 6A5, we can see that

these phenomenon are accounted for by an f(d) that increased
more strongly and earlier because of the closer surround condi-
tions. Please note that f(d) is expressed in a metric equivalent to a
contrast multiplied by a spatial constant, and therefore is not
bounded by 100. An f(d) above 100, as observed for close sur-
round, indicates that the surround-mediated input has to be
stronger than the central-mediated input to achieve suppression
(note that these effects are largely nonlinear). These observations
strongly support that these effects are driven by a propagation of
activity that takes more time for far surround to reach the repre-
sentation of the center. In Figure 6B, we show that, when averag-
ing the activity to a cortical position that is closer to the surround
inner border, all effects are shifted to earlier time bins. This is a
supplementary argument in favor of a propagation of suppres-
sion along the cortical surface. In brief, our results demonstrate
that contrast sensitivity is clamped at a point in time that depends
on surround absolute position, and the cortical distance to the
representation of the surround. Clearly, such freezing of the
CoRF leading to suppression is driven by a propagation of cen-
tripetal activity that originates from the inner surround border.

To take into account both surround position and cortical po-
sition, we show in Figure 7 the actual propagation of surround
suppression and surround-mediated net suppressive input in the
same distance–time space depicted in Figure 4F. To quantify the
suppressive effects, we use two indices (Cavanaugh et al., 2002a):
a response gain index (RGI) and a contrast gain index (CGI; Eq.
5) ranging from 0 (no effect) to 1 (complete clamp of the CoRF;
Fig. 5C, last frame):

RGI �
Rmax

center � Rmax
center-surround

Rmax
center � Rmax

center-surround

CGI �
c50

center � c50
center-surround

c50
center � c50

center-surround
, (5)

Figure 6. Dynamics of surround influence on center contrast response function. We plot the dynamics of five parameters extracted from the Equation 4 fit, averaged in two different regions of
interest [central (A) and more peripheral (B), see left-hand icons] and three surround positions (blue color-code). A1–B1, Dynamics of c50. A2–B2, Dynamics of CT. A3–B3, Dynamics of n. A4–B4,
Dynamics of ACMR. A5–B5, Dynamics of the f(d). Arrows point at latency of responses to the three different surround-only stimuli.
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Figure 7, A and B, plots the spatio-
temporal dynamics of RGI and CGI in the
distance–time space depicted in Figure
4F. Surround suppression propagated
from the cortical representation of the
surround inner border (distance 0) to the
central representation, affecting both re-
sponse amplitude and contrast gain with
comparable dynamics, as indicated by
oblique regression lines (see Materials and
Methods). Slopes of these regression lines
yield to propagation speeds of 0.09 and
0.16 m/s, respectively, for these two forms
of surround suppression, as captured by
RGI and CGI, respectively. These speed
values are in the range of the axonal con-
duction speed of horizontal axons (Hirsch
and Gilbert, 1991), supporting the idea
that surround influence on contrast dy-
namics of center-driven activity is medi-
ated mainly by a centripetal propagation
of horizontal connectivity. Note, how-
ever, that suppression in contrast gain
propagates up to 8 mm further than sup-
pression of response gain. Indeed, RGI is
strongest for the first 2 mm from the surround border, a distance
within which 95% of the intracortical connectivity has been
shown to arise (Markov et al., 2011). Thus, even weak intra-
cortical connections beyond 2 mm can clamp the contrast
response function efficiently at the time it reaches the central
representation.

Surround suppression seemed to act by balancing the slow
increase in contrast gain that was seen in the center-only condi-
tion. To better understand this mechanism, we plotted the net
influence of the surround, as given by parameter f(d), in the same
distance–time space (Fig. 7C) that can be compared with the
cortical activity evoked by surround-only stimuli (Fig. 4F). Both
f(d) and activity propagate from the cortical surround position
toward the central grating representation, albeit with different
speeds and shapes. First, f(d) was slower (0.07 vs 0.20 m/s; Fig. 7C,
tilted line), although this difference was not confirmed in the
second monkey (NO; Fig. 8C). Second, its spatio-temporal
profile was biphasic, peaking for positions close to the outer
border of the surround stimulus �100 ms after stimulus on-
set. Such dynamics seem to be a byproduct of the horizontal
propagation converging within the cortical central represen-
tation and the slow and transient dynamics of the normaliza-
tion pool in center-only conditions. This suggests that the
surround stimulus elicits a centripetal propagation of activity
that balances the net effect of the normalization pool, resulting
in a global suppression of the center-driven responses.

Figure 8 synthesized our results in a simple framework. Figure
8A illustrates both the stimulus and the divisive normalization
recurrent circuits implementing local input integration (in red)
and surround suppression (in dark and light blue). The thickness
and size of the arrows grossly represent the known connectivity
strength (Markov et al., 2011). In Figure 8B, we illustrate the
schematic dynamic of the contrast response function for the three
conditions tested here: the central stimulus alone (red); a center
stimulus with a close surround (dark blue); or a far surround
(light blue). Our results strongly suggest that, in response to local
stimulus, the population contrast gain gradually increased over
time (red curve on the right) due to a recurrent network that

feeds the normalization pool. Such a recurrent network exhibits a
transient change in size after response onset (red arrows on the
left). In the presence of a surround stimulus, we demonstrate the
existence of a propagation of suppression (blue and cyan color
code) feeding both the input and the divisive normalization pool
to freeze the time evolution of the central contrast response func-
tion. The various estimates of speed values are summarized in
Figure 8C for both monkeys. Centripetal, centrifugal, and f(d)
propagation speeds are all within the expected range of horizon-
tal connections, which is one order of magnitude higher than the
estimated swelling speed. This argues in favor of the idea that the
observed normalization of pool size dynamics is the result of a
dynamic and transient polysynaptic recruitment of neuronal ac-
tivity. Importantly, not only does the propagation speed differ
between these phenomena, but also their spatial extent: swelling
increased by a magnitude of 0.35– 0.45 mm (Fig. 3C,D), whereas
the propagation we observed extended up to 8 m, with the stron-
gest effect within 2 mm (Figs. 4F, 7). For the stimuli used in this
study, our results suggest that the local contrast gain setting and
surround suppression are shaped by intricate intracortical inter-
actions acting at two different spatio-temporal scales.

Discussion
In this study, we have shown that the context-dependent local
contrast gain setting is a dynamical mechanism involving both
local recurrent networks and long-range lateral interactions. Al-
brecht et al. (2002) had previously shown that setting mecha-
nisms act instantaneously at the response onset of individual V1
neurons. However, their interpretation was based on response
profiles that were time shifted and scaled to study the time
courses of spiking neuronal responses independently of individ-
ual responses latencies. Therefore, they did not dissect the rapid
changes occurring during the initial, transient phase of the re-
sponses. Instead, we characterized the initial, subthreshold re-
sponse of the V1 population relative to stimulus onset. We found
that the gain setting of such a large population is highly dynam-
ical since contrast gain rapidly increased (i.e., c50 shifted to lower
contrast) with a time constant of �30 ms. Such a rapid change in

0

300

0

1

0

1

A B C

Figure 7. Surround-induced propagation of normalization and suppression. Different components of the surround propagation
controlling the central CoRF are shown along the unified metric introduced in Figure 4 F. A, B, Propagation of response and contrast
suppression: spatio-temporal maps of the RGI (see Fig. 5C) (A) and CGI (see Fig. 5C) (B). The dotted line indicates regression line
best-fit to the iso-contour of significant levels of RGI and CGI. C, Net peripheral input propagation: spatio-temporal map of the
integral of f(d). The dotted line indicates the regression line best fitted to the iso-contour of significant levels of peripheral input
strength.
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gain over time is consistent with the lowering of contrast discrim-
ination thresholds observed when increasing the integration time
window (Müller et al., 2001; Albrecht et al., 2002). Interestingly,
recent results show that a similar optimal integration time of �30
ms is needed to explain the dynamics of normalization observed
in human visual evoked potentials (Tsai et al., 2012). These re-
sults, together with our own data using short-latency ocular fol-
lowing responses (for review, see Masson and Perrinet, 2012),
suggest that normalization is rapid but not instantaneous. The
present results clearly show that contrast sensitivity is continu-
ously regulated and normalized over the whole activated V1 cor-
tical surface by means of a dynamic normalization pool. By
inspecting how the synaptic population CoRF changes along the
cortical point-spread function, we have been able to estimate the
size of this pool and demonstrate that it is controlled by a large
recurrent network, waxing and waning with dynamics consis-
tent with polysynaptic intracortical “rolling wave” propaga-
tions (Trevelyan et al., 2007). Importantly, this steady-state
normalization pool size is in the same range as the expected
point-spread function previously reported for this eccentricity
(Dow et al., 1981; Van Essen et al., 1984; Tehovnik and Slo-
cum, 2007), suggesting that the normalization pool comprises
all neurons whose receptive fields overlap. VSDI gives a direct
access to the pooling of postsynaptic activity generated within
the local recurrent network to normalize the thalamo-cortical
input (Albrecht and Hamilton, 1982; Carandini et al., 1997).
In that regard, it is interesting to note that such a transient
increase in local suppression strength resembles the dynamics
of visually evoked input shunting inhibition in V1 neurons
(Borg-Graham et al., 1998). Moreover, it has recently been
shown that lateral input from surround stimulation also in-
duces a transient increase of shunting inhibition with strik-
ingly similar dynamics (Ozeki et al., 2009). This could
contribute to the transient net suppression of spiking response
observed in monkeys (Bair et al., 2003).

Furthermore, we demonstrate that such local recurrent dy-
namics are strongly modulated by indirect inputs from remote
cortical locations. Surround-driven activity propagates over the
cortex at a speed consistent with the slow lateral interactions
conducted by unmyelinated horizontal axons (Hirsch and Gil-
bert, 1991; Grinvald et al., 1994; Bringuier et al., 1999). Once it
reaches the cortical central representation, it freezes the center-
driven CoRF dynamics, leading mechanically to suppression. In
this study, we intentionally did not manipulate the orientation
difference between center and surround since, with VSDI, iso-
oriented and cross-oriented surrounds lead to only small differ-
ence of suppression level (Grinvald et al., 1994; Meirovithz et al.,
2010). Rather, we probed the cortical origin of this suppression
by manipulating the surround distance that allowed inspection of
the spatio-temporal development of the suppression. Using the
same rationale, Bair et al. (2003) examined the spatio-temporal
dynamics of center–surround interactions and found that the
spiking response of single neurons in V1 was suppressed by sur-
round inputs with a time delay that increases with distance. They
suggested that such suppression propagates for a large range of
speed that varies from cell to cell and whose lower limit is of the
same order as the one observed here (�0.1– 0.3 m/s) but whose
higher limit is one order of magnitude higher (	1 m/s). Discrep-
ancies between some of their results and our own might be ex-
plained by the differences in recording methods and stimulus
configuration. With VSDI, we measure a population response at
the subthreshold level for a given eccentricity and for limited
center–surround separations (0°, 1°, and 1.8°), whereas Bair et al.
(2003) made extracellular recordings from individual cells. Their
population of cells spanned a large range of eccentricities, result-
ing in a large diversity of optimal stimulus properties and center–
surround distances (up to 6 –7°) going further than what
horizontal interactions can anatomically account for (�2–3°)
(Angelucci et al., 2002). We believe that our results actually un-
derpin the suggestion made by Bair et al. (2003) in their discus-

Figure 8. Intracortical circuits implementing local input normalization and surround suppression. A, Schematic drawing illustrating both stimulus and the divisive normalization recurrent circuits
implementing local input integration (in red) and surround suppression (in blue). Red and blue arrows depict horizontal spread of activity at a constant speed, v, over various distances. The
normalization pool implementing local divisive normalization is transiently fed by polysynaptic recurrent intracortical activity (red), whereas surround suppression feeds both the normalization pool
and the direct input to the cell (blue). B, Schematic dynamics of the contrast response function for the three conditions tested here: the central stimulus alone (red); a center stimulus with a close
surround (blue); or a far surround (cyan). At the second and third time frames, the presence of a surround clamps the CoRF at the state it has reached, whereas center-only stimuli CoRFs continue to
evolve (red arrow). C, Recapitulation of the various speeds measured for both monkeys. Color-coded legend shown on the right.

Reynaud et al. • Dynamics of Input Normalization by V1 Population J. Neurosci., September 5, 2012 • 32(36):12558 –12569 • 12567



sion that there is a diversity of suppression sources operating at
different spatio-temporal scales, a fast and large-scale source
originating from feedback as suggested by their results and from
the known speeds and large divergence– convergence values of
these projections (Bullier, 2001, Kennedy and Bullier, 1985), and
a slow and small-scale mechanism as reported here, most proba-
bly under the control of horizontal connectivity (Bringuier et al.,
1999). This latter suggestion is strongly reinforced by the fact that
the different behavior observed for near and far surround sup-
pressions are well captured by a model that includes horizontal
interactions only in the near-surround condition and feedback
interactions for both near and far surrounds (Schwabe et al.,
2010). Importantly, at the eccentricity where our stimuli were
presented, what was defined in those later studies as near sur-
round (�2.5°; presumably under the control of horizontal con-
nectivity) actually encompasses the range at which we see our
effects (Fig. 1A, retinotopic map). We conjecture that our results
fit within the “small” scale proposed by Bair et al. (2003) and do
not reveal any evident fast and large feedback effect that may
actually require a different stimulus scale. Within that small scale,
it is further interesting to note that 95% of the inputs received by
V1 cells come from intracortical connectivity within a distance of
2 mm (Markov et al., 2011). We also observed that most of the
surround response suppression (as captured by RGI) arises
within 2 mm of the surround border. In contrast, the contrast
gain setting (as captured by CGI) was affected up to 8 mm, sug-
gesting that weak intracortical connectivity strength beyond that
distance has the potential to clamp very efficiently the contrast
response function at the time it reaches the central representa-
tion. This strong modulation from very few neurons over many
recipient neurons is to be compared with the ability of thalamic
input to drive the primary visual cortex, although only represent-
ing a very small fraction of input that a cortical cell receives
(Markov et al., 2011).

Our results are based on a direct measure of V1 population
response over a large cortical surface and strongly suggest that
local recurrent and contextual horizontal networks contribute to
local input normalization. The push–pull effect observed for con-
trast gain of the population response is coherent with the oppo-
site effects of summation and suppression that have been
consistently reported in the classical and nonclassical parts of the
receptive fields of V1 neurons (Cavanaugh et al., 2002b). We
suggest that both inputs balance each other to clamp contrast
gain to a steady, context-dependent range. Thus, lateral inputs
would act by controlling the dynamical state of the recurrent
network that implements local contrast normalization. These re-
sults are in line with models and physiological results showing
that increasing input to a cortical network (e.g., increasing time
after stimulus onset or surround stimulation, as in our results)
can result in a net suppressive effect when the network is stabi-
lized by inhibition (Tsodyks et al., 1997; Ozeki et al., 2009). In-
vestigating population temporal dynamics of synaptic responses
is fruitful to dissect out the contribution of the intricate intracor-
tical interactions involved in the adaptive processing of large-
scale visual inputs as are found in natural images. Such an
approach can be easily extended to any sensory system where
activity changes both spatially and temporally with input strength
and context. It will also enable the linking of the temporal dy-
namics of neuronal and behavioral responses (Reynaud et al.,
2007; Masson and Perrinet, 2012). Last, our results stress the need
for a dynamical version of divisive normalization models that
were recently designated as one canonical neuronal computation
(Carandini and Heeger, 2011).
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